《螺纹轴的综合加工》 教案

任务一:	探究,	分析图纸,确定工艺	2
任务二:	研学,	G71 学习与运用 ·······	6۰
任务三:	精练,	编程与仿真验证	12
任务四:	活用,	实操加工······	15
任务五:	评析,	成果展示	21

课程名称:数控车床编程与操作

参赛组别:专业技能课程二组

专业大类: 机械加工类

任务一:分析图样,制定方案、加工工艺

教学目标:

- 1、能够读懂零件图;
- 2、能根据零件图确定加工方案
- 3、能根据零件图合理选择刀具
- 4、对加工零件进行加工工艺分析,填写数控加工工艺卡片

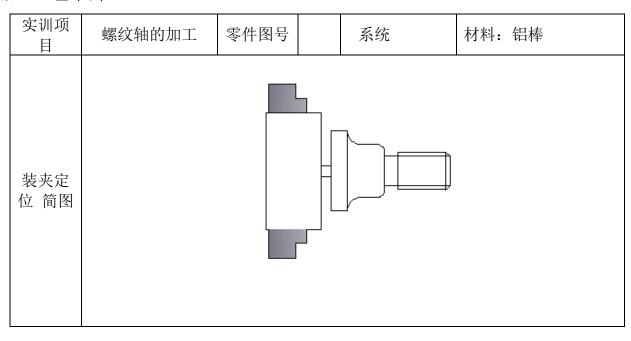
学时: 2 课时

重难点:根据零件图确定加工方案、制定加工工艺

教学过程:

教学 环节		教师活动	学生活动
实物展示任 务引入	2、提问 3、实物 4、提问	长台阶轴实物 句:台阶轴的外轮廨特点 切(简单螺纹轴)展示 句:零件外轮廊与台阶轴外轮廓有什么不同? 分引入"轴的综合加工"	边看实 物边思 考并回答问题
	设计意图	以实物的形式开始本课的教学,这样可以让学生有一起学生兴趣,促进思考,从而调动学生学习的积极 发学生的学习热情	
	1、出元	卡图纸	
任务展示	o c v	1.6 20 45	思考并自由发言,和老师一起分析零件图纸
	2,	分析图样的组成及其尺寸	

	零件识读	进一步理解零件实物的特征,明确零件各部分尺寸,加工工艺统识,圆弧的编程指令等,学生已经学习了阶梯轴的编程加工,并展到圆弧轴的编程加工,有新的知识,有新的亮点,能够调动等习的欲望。			
任务分析设计意图		1、该工件由两处外圆(Φ20Φ30)、两段圆弧(R5、R3)、一个退刀槽 5*1.5 和一个 M14 螺纹组成: 2、加工长度为 45mm. 用切断力切断; 3、该零件所有表面的粗糙度均为 Ra1.6.	老师引导下读 懂零 件图		
		明确加工要求,为以后工艺分析,刀具的选择,工具、量具的选用,切削参数的确定,表面加工粗糙度及零件编程奠定基础。	明确 加工要求,工、量具的选择		
	工艺分析	1、确定装夹方案 工件毛坯件为Φ35 铝料,用三爪自定心卡盘一 次装夹,伸出长度大约 60mm,加工工件所有外 形,最后切断. 2,工件原点 以工件右端面与轴线交点为工件原点,建立工 件坐标系 (采用试切对刀建立)			
任务实施	设计意图	结合以前学过的知识,学生分组讨论,培养团队协 作的意识、自主建构知识和技能训练。	分组讨论, 最后每组选 出一		
	刀具工具择	根据零件各个部位的加工需要,选择适用的刀具以及测量工具,并填写选用卡	名学生进行总 结		
	确定加工工艺	根据确定的加工方案,制定加工工艺,并填写加工工艺卡片。			


刀具选用卡

刀 号	刀具名称	刀片规格	加工表 面	参考图片	备注
T0101	93⁵外圆车 刀	35°菱形 RO. 4	外轮廓	0 10	粗车 精车
Т0303	外螺纹刀	60°	螺纹		螺纹
T0202	切断刀	宽 5mm	切断		切断

工、量具选择

序号	量具名 称	规格	精度	参考图片
1	游标卡尺	150mm	0.02mm	-
2	半径样板	R1~R6.5mm		
3	螺纹样板			
4	卡盘、 主轴扳手			

加工工艺卡片

					切削用量		
操作步骤	操作内容	G 功能指令	刀具	主轴转 速 S (r/min)	进给速 度 F (mrn. T)	背吃刀 量 a, (min)	程序号
1	车 右 端面,建立 长度方向 基准	G01	TOIOI	600	50	0.5	
2	粗车零件 外轮廓	G01 G02/G03 G71	ТО1О1	600	80	2	
3	精车零件 外轮廓	G01 G02 G03 G71/G70	T0101	1000	80	0.2	
4	切槽	G94	T0202	400	40		
5	加工螺纹	G92	T0303	600			
4	切断	G94	T0202	400	40		

任务二: G71 指令学习与运用

教学目的:

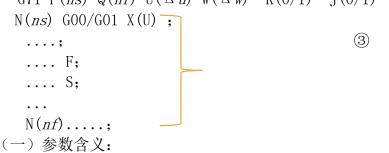
- 1、能认识复合型固定循环 G71 的格式和功能。
- 2、能分析复合型固定循环加工轨迹,合理选择循环参数。
- 3、能合理确定加工工艺的路线。

学时: 4 课时

重点: 合理确定循环参数

难点: 合理确定加工工艺的路线

教学内容:


引入新课:

通过前面的学习我们已经知道,用 G01、G02/G03 指令可以完成外形轮廓的程序编写。但存在一些问题:如果不分层加工,背吃刀量太大;分层加工,用这些指令编程将导致程序太冗长。那有没有即能控制背吃刀量不大、编写程序又不太长的方法呢?答案是肯定的,这就是我们今天要学习的内容: G71 指令。

一、G71 指令格式

G71 U(Δd) R(e); (1)

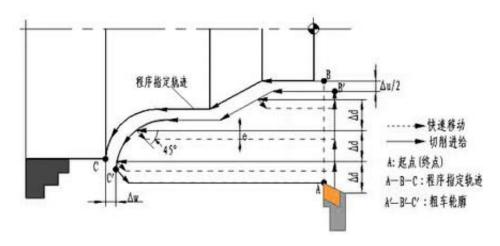
G71 P(ns) Q(nf) U(Δu) W(Δw) K(0/1) J(0/1) F S T; ②

G71指令分为三个部分:

- ①——给定粗车时的切削量、退刀量的程序段。
- ②——给定定义精车轨迹的程序段区间、精车余量和切削速度,主轴 转速、刀具功能的程序段。
- ③——定义精车轨迹的若干连续的程序段,执行 G71时,这些程序段仅用于计算粗车的轨迹,实际并未被执行,系统根据精车轨迹、精车余量、进刀量、退刀量等数据自动计算粗加工路线,沿与 Z 轴平行的方向切削,通过多次进刀→切削→退刀的切削循环完成工件的粗加工。G71的起点和终点相同。本代码适用于非成型毛坯(棒料)的成型粗车。其中:
 - Δd ——粗车时 X 轴每次进刀量(半径值)。
 - e——粗车时 X 轴的退刀量, 退刀方向与进刀方向相反。
 - ns——精车轨迹的第一个程序段的程序段号。
 - nf——精车轨迹的最后一个程序段的程序段号。

 Δu ——X 轴的精加工余量,粗车轮廓相对于精车轨迹的 X 轴坐标偏移。(直径值,有正负符号)

Δ w——Z 轴的精加工余量,粗车轮廓相对于精车轨迹的 Z 轴坐标偏移。(有正负符号)

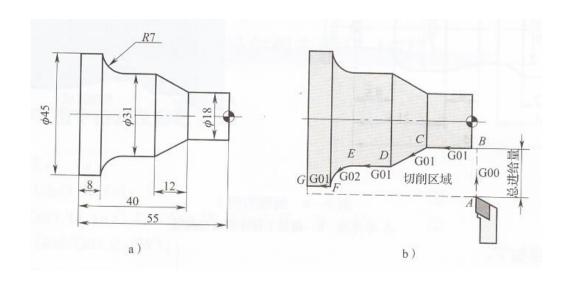

F——切削进给速度。

S--主轴转速。

T--刀具号,刀具偏置号。

F、S、T: 可以在第一个 G71代码或第二个 G71代码中指定。

(二)指令运动轨迹


- (1) 从起点 A 点快速移动到 A 点(X 轴移动 $\triangle u$ 、Z 轴移动 $\triangle w$).
- (2) 从 A' 点沿 X 轴移动 \triangle d(进刀), ns 程序段是 G00 时, 按快速移动速度进刀, 如果 ns 程序段是 G01 时. 按 G71 的切削进给速度进刀, 进刀方向与 A 点到 B 点的方向一致
 - (3) Z 轴切削进给到轮廓粗车,切削方向与 B 点到 C 点 Z 轴坐标变化一致。
 - (4) X 轴、Z 轴按切削进给速度退刀 e (45°直线),退刀方向与各轴进刀方向相反。
 - (5) Z 轴以快速移动速度退回到与 A '点 Z 轴绝对坐标相同的位置。
- (6) 如果 X 轴再次进刀(\triangle d+e)后,移动的终点仍在 A'点"到 B'点的连线中间(未到达 B'点),X 轴再次进刀(\triangle d+e),然后执行第(3)步;如果 X 轴再次进刀(\triangle d+e),移动的 终点到达 B'点或超出了 A'点到 B'点的连线,X 轴进刀至 B'点,然后执行第(7)步
 - (7) 沿粗车轮廓从 B' 点切削进给至 C' 点; 从 C' 点快速移动到 A 点, G71循环执行结束,程序跳转到 nf 程序段的下一个程序段执行。

二、刀具定位点的确定

刀具定位点是执行 G71循环指令之前刀位点所在的位置,该点既是程序循环的起点,也是程序循环的终点。对于该点,考虑到快速进刀的安全性, Z 向应离开加工部位1~2mm。在加工外圆表面时, X 向等于或略大于毛坯外圆直径; 加工内孔时, X 向等于或略小于底孔直径。

三、实例讲解

如图所示,毛坯直径为50mm,用G71指令对零件进行粗加工

参考程序如下:

0005:

M03 S800 T0101; 主轴正转,转速800 r/min.使用1号刀

G00 X50 Z2; 快速定位到 A 点

G71 UI. 5 RO. 5; X 向每次进刀3 mm (直径). 退刀量0.5mm

G71 P1 Q2 U0. 3 W0. 1 F80; X 向留0.3 mm 的余量. Z 向留0.1mm 的余量

N1 G00 X18; G01 Z-15 F60;

X31 W-12;

Z-40; N1~N2精加工程序. 编程路线如上图所示

GO2 X45 W-7 R7;

N2G01 Z-55;

G00 X80Z80; 快速返回刀具起点

M05; 主轴停止 M30; 程序结束

需要说明: N1行编写程序时不能出现 Z 方向的值。

四、仿真加工(演示操作)

(一) 启动仿真软件

方法一: "开始"→"程序"→"数控加工仿真系统"→"数控加工仿真系统"→弹出"用户登录"界面。

方法二:双击桌面的快捷方式图标

点击"快速登录",直接进入。

(二)选择数控车床

点击菜单"机床/选择机床"或点击 "选择机床"图标→弹出对话框→填写对话框→点击"确定"→广州数控车床仿真界面。

(三)激活机床

点击 "紧急停止"按钮,将其松开。

- (四)回参考点(先 X 轴后 Z 轴)
 - (1) 点击 "机械零"键;
- (2) 点击向下箭头 X 键 X 轴回原点, X 轴灯变亮;
- (3) 同理按向右 Z 键完成 Z 轴回原点。
- (五)设置并安装工件
- (1)点击菜单"零件/定义毛坯"或点击 "定义毛坯"图标→弹出对话框→填写对话框 →点击"确定"完成毛坯定义;
- (2) 点击菜单"零件/放置零件"或点击"放置零件"图标→系统弹出对话框→选择零件 →点击"安装零件"→利用 移动工件。

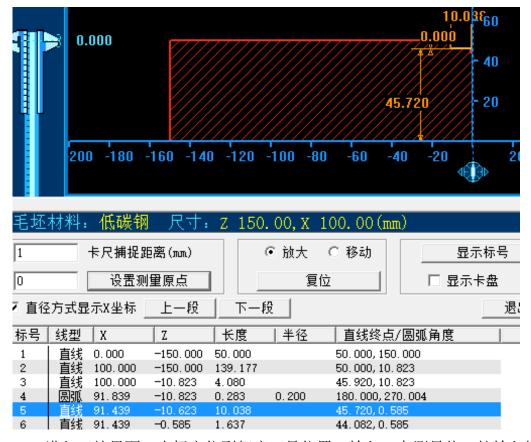
(六)选择刀具

- (1) 点击菜单"机床/选择刀具"或点击"选择刀具"图标→系统弹出刀具选择对话框。
- (2) 选择车刀
- ① 在刀架图中点击所需的刀位;
- ② 选择刀片类型;
- ③ 在刀片列表框中选择刀片;
- ④ 选择刀柄类型、列表框中选择刀柄。

(七) 对刀

主轴正转

Z 向对刀:沿 X 方向车削端面至圆心处,在保证车刀 Z 向不动的情况下原路原路返回



进入刀补界面, 光标定位到相应刀号位置, 输入 Z0, 按输入键, 完成 Z 向对刀

刀具偏置		0(9000 N	9000
序号	X	Z	R	т
000	0.000	0.000	0.000	Θ
_ 001	0.000	0.000	0.000	Θ
002	0.000	0.000	0.000	Θ
003	0.000	0.000	0.000	0
004	0.000	0.000	0.000	Θ
005	0.000	0.000	0.000	0
006	0.000	0.000	0.000	Θ
007	0.000	0.000	0.000	Θ
相对坐标 U	-300.925	W	-858.825	
序号 001	Z 0	手	S0120 加方式	T0000

X 向对刀: 沿 Z 向车削外圆, 在保证车刀 X 向不动的情况下原路原路返回, 主轴停止,

进行测量,

进入刀补界面,光标定位到相应刀号位置,输入 X 向测量值,按输入键,完成 X 向对刀 4)、录入程序

切换到编辑方式,按程序按钮进入程序录入界面,录入程序。

5)、自动加工

切换到自动方式,按循环启动,开始自动加工。

六、教师巡回指导,解答学生的问题

七、学生分组,按图编写轴的程序。小组间进行程序的评析

小结:

本课题是用多重循环命令 G71 命令加工零件的尝试,编写的程序与之前相比简化的更多。虽然程序简化,但不影响零件的加工,反而能提高效率。在以后的编程中我们要尽量使用此类命令来简化程序的编写,但前提条件是必须遵守安全生产和文明生产的要求规范。

课外作业:

完成零件程序的预编写

任务三: 螺纹轴仿真模拟

教学目标:

1、会正确定义、安装工件

2、能正确选用刀具并安装

3、会在仿真系统上输入程序

4、能进行试切对刀,完成零件加工

学时: 4 课时

地点:数控仿真实训室

教学过程:

教学 环节		教师活动	学生活 动
	任务引领	前面的课程中,已经完成了零件程序的编写。从这节课 开始利用仿真软件进行零件的加工,从而验证程序的正确 性。	
	设计意图	通过任务引领,让学生明确课程内容。然后通过示范仿 真软件的主要操作,让学生明晰零件加工的顺序步骤	
机床操作示范	选 择机床	1、双击桌面的快捷方式图标 进入数控加工仿真系统点击"快速登录",直接进入软件。 2、点击菜单"机床/选择机床"或点击 "选择机床"图标→弹出对话框→填写对话框→点击"确定"→进入广州数控数控车床仿真界面。 3、点击 "紧急停止"按钮,将其松开激活机床4、回参考点(先 X 轴后 Z 轴)(1)点击 "机械零"键; (2)点击轴 键→点击 快速 和 + 键, X 轴回原点	要求每位熟记程机过程

安夹件刀具	(1) 点击菜单"零件/定义毛坯"或点击 "定义毛坯"图标→弹出对话框→填写对话框→点击"确定"完成毛坯定义; (2) 点击菜单"零件/放置零件"或点击"放置零件"图标→系统弹出对话框→选择零件→点击"安装零件"→利用 移动工件。 (3) 点击菜单"机床/选择刀具"或点击 "选择刀具"图标→系统弹出刀具选择对话框,选择车刀。 在刀架图中点击所需的刀位; ② 选择刀片类型; ③ 在刀片列表框中选择刀片; ④ 选择刀柄类型、列表框中选择刀柄。	要位熟件的和以具择安生零坯义置刀选
对及证	2 向对刀 (1) 手动切削外径 ①点击 "主轴正转"键; ②刀具接近工件,点击 文键,点击 文键,切削工件端面; ③点击 **键,2 方向保持不动,刀具退出。 ④点刀补键,进入刀补设置界面。⑤在相应刀号位置输入 20。⑥按输入键,完成 2 向对刀 X 向对刀 (1) 手动切削外径 ①点击 "主轴正转"键; ②点击 ** 2 键→点击 ** 2 键,刀具试切工件外圆; ③点击 ** 3 建, 3 有,	由装具的进具刀验刀零夹安学行的及证件刀装生刀对

		至此完成 T01 对刀,其他刀具对刀过程相似。	
	录入程序	(1) 点击 "编辑"键; (2) 点击 "程序"键,进入程序界面; (3) 输入程序名 "O××××" (输入的程序名不能与 已有程序名重复); (4) 点击 "EOB/换行"键; (5) 用鼠标或键盘输入O××××程序的内容。	要求每 位学生 熟记 字录 的步骤
	自动加工	(1) 点击 "自动运行"键; (2) 点击 "循环启动"键,自动加工零件。	要位注察运轨否计迹求学意车行迹与的一每生观刀的是设轨致
	测 量 工件	点击菜单"测量/剖面图测量",零件的几何要素均显示在下半部,点击线段,选中的线段由红色变为黄色,同时其下半部几何参数高亮显示。	检验一 下零件 各个部 位的尺 寸
学生 独立 练习	设 计意图	通过练习在验证学生编写的程序的完整性、可应用性的同时 巩固软件操作步骤。 在这个过程中,教师要巡回指导,以工厂环境下的要求规范 学生的操作,进行安全、文明生产教育。对学生操作过程中 出现的共性问题进行详细讲解,个别问题个别解答。	
分析评价		在以小组为单位的自评后,对学生的操作过程进行综合评价。	学自操程总 制决的对的过行 解题案

任务四:螺纹轴实操加工

教学目标:

- 1、会正确安装工件
- 2、能正确选用刀具并安装
- 3、会在数控系统上输入和校验程序
- 4、能进行试切对刀,完成零件调试加工
- 5、能完成零件的测量

学时: 4课时

地点: 车床实训室

+/4, 337.		W. H.
教学		学生
环节	教师活动	活动
		\\\ . I
	一、出示零件实物引入新课:这就是我们在实训室最终要完成的加工任	学生
	务	回答
	二、概述前面完成的任务: 在前面的课程中, 已经完成零件图识图、分	问题
	析出了零件的组成部分。在此基础上还完成了加工方案的制定、工量具	
	的选择、加工工艺卡片的填写等内容,并且完成了仿真软件中的模拟加	
	工。	
	三、布置任务:接下来的时间,我们要在实训室里模拟工厂的生产环境	
	来完成零件的加工。	
	四、明确加工过程中容易出现的问题:	
	提出问题: 仿真加工过程的步骤是怎样的?	
	开机一装夹毛坯一装夹刀具一对刀及校验一程序录入一	
	自动加工	
	补充:实际加工时还有程序校验这一关键步骤	回忆
	提出问题:	学普
	1、装夹毛坯有什么注意事项?	车时
	(刀杆伸出长度的要求、机床上限位块的作用)	的要
	2、车刀装夹有什么要求?	求回
	(伸出过长刚性降低、切槽刀放正否则槽深不一致、螺纹刀对不准影	答问
	响螺纹的完整性)	合内 颞
	·····································	咫
	(安全、文明生产要求)	
	设计意图 通过提问,使学生注重安全、文明生产操作规范	
	着重对录入程序环节进行强调:要有细心、有耐心,多检查几遍	
	设计意图 适时进行思政教育,要养成细心、严谨的工作习惯,以"匠	
	人"精神要求自己,时刻对标大国工匠。	
	学生以小组为单位,按仿真加工时的步骤开始加工操作	
机床	开启机床 1、打开机床总电源启动数控车床系统	要求

2、系统自检完成后,在出现报警状态后,信息报警指示灯	每位
	学生
	熟记
	开机
	过程
5、上月人日上秋城头月	
1 4 E	
每组选派一名学生进行零件的装夹,刀具的安装:完成装夹后让其他同学检查,保证装夹正确,同时保证每个过程都有动手的机会。	
数控车床与普通车床比较,在结构上增加了限位块。目的是为了限制刀架的行程,避免撞刀,以防事故的发生。因此,车刀不会运行至卡盘很近的位置,所以毛坯伸出的长度多一些,从而保证能几个出完整的零件。。	
	■出现红色光一闪一闪的. 松开急停按钮 ② 这是由关机 后按下紧急急停按钮所导致的。在按下复位键使系统复位 4、打开机床照明灯 1、使用三爪自定心卡盘装夹定位,装夹Φ35 杯料毛坯的 外表面. 伸出长度大约 60mm 2、在刀架 1 号刀位上装外圆车刀,在 2 号刀位上装刃宽 5mm 的切断刀. 3、在刀架 3 号刀位上装螺纹刀 每组选派一名学生进行零件的装夹,刀具的安装:完成装夹后让其他同学检查,保证装夹正确,同时保证每个过程都有动手的机会。 数控车床与普通车床比较,在结构上增加了限位块。目的是为了限制刀架的行程,避免撞刀,以防事故的发生。因此,车刀不会运行至卡盘很近的位置,所以毛坯伸出的长度多一

ìF

对刀及验 1 号 93°外圆车刀对刀 对刀的步骤:

- 1、录入方式下,键入 MO3 S500,按输入按钮,再按循环启 动,指定主轴转速为500r/min/
- 1) 把刀架移到靠近工件的位置
- Z 向对刀。使刀具在 Z 向切入 0.05 ~ 0. 1mm, 车平工件 右端面,速度适中,到中心后反向退出,在刀补(OFS/SET> 的偏置界面中,001 处输入 Z0.0, 再按输入,完成 Z 向对刀。
- 3) X 向对刀。在 X 向切入 0.1~0.2mm, 长度无须多切(只要 能用游标卡尺测量即可),量出直径尺寸,在刀补(OFS/SET) 的偏置界面中,001 处输入量出的尺寸,再按输入,完成 X 向 对刀。

2、验证:

1)、先让车刀远离工件,在录入方式下输入以下内容: T0101; (1号刀)

G00 XΦ; (Φ为所量尺寸直径)

手动或手脉沿 X 方向移动车刀,观察是否能车削上工件,如 果刚能车削上,说明 X 向对刀正确。

在坐标以绝对方式显示的情况下, 当车刀运动到 Z0 时, 观察刀尖是否与端面对齐。如果能对齐,说明 Z 方向对刀正 确。2)、依次按输入和循环启动按钮

- 3)、切换至手轮方式,用手轮摇 Z 轴方向,让刀具接近工 件, 直至工件直径处, 看看刀尖是否与刚切过的直径处 对齐: 若对齐说明 X 向对刀正确, 若有误重新对刀:; 接下来看那个绝对坐标系里的 Z 华标数值,摇到零位, 看看刀尖与件右端而是否时齐, 若对齐说明 Z 向对刀正 确, 若有误重新对刀。
- 2号刃宽 5mm 的切断刀对刀步骤:
 - 1) 把刀架移到靠近工件的位置
 - 2) Z向对刀。使刀具在Z向刚蹭上工件右端面,速度适 中,沿X方向退出,在刀补(OFS/SET>的偏置界面中, 002 处输入 Z0.0, 再按输入, 完成 Z 向对刀。
 - 3) X 向对刀。在 X 向切入 0.1~0. 2mm, 长度无须多切 (只要能用游标卡尺测量即可),量出直径尺寸,在刀补 (OFS/SET) 的偏置界面中,002 处输入量出的尺寸, 再按输入、完成X向对刀。

验证:

1)、先让车刀远离工件,在录入方式下输入以下内容: T0202; (2号刀)

G00 XΦ; (Φ为所量尺寸直径)

手动或手脉沿 X 方向移动车刀,观察是否能车削上工件,如

由零 件装 夹、 刀具 安装 的学 生进 行刀 具的 对刀 及验 证对 刀

	果刚能车削上,说明 X 向对刀正确。 在坐标以绝对方式显示的情况下,当车刀运动到 Z0 时,观察 刀尖是否与端面对齐。如果能对齐,说明 Z 方向对刀正确。 3 号螺纹刀对刀步骤: 1)把刀架移到靠近工件的位置 2) Z 向对刀。使刀具在 Z 向与工件右端面对齐,速度适中,沿 X 方向退出,在刀补(0FS/SET>的偏置界面中, 003 处输入 Z0.0,再按输入,完成 Z 向对刀。	
	3) X 向对刀。在 X 向切入 0.1~0.2mm, 长度无须多切(只要能用游标卡尺测量即可), 量出直径尺寸, 在刀补(0FS/SET)的偏置界面中, 003 处输入量出的尺寸, 再按输入, 完成 X 向对刀。验证: 1)、先让车刀远离工件, 在录入方式下输入以下内容: T0303; (3号刀)G00 XΦ; (Φ为所量尺寸直径)手动或手脉沿 X 方向移动车刀, 观察是否能车削上工件, 如果刚能车削上,说明 X 向对刀正确。在坐标以绝对方式显示的情况下, 当车刀运动到 Z0 时, 观察刀尖是否与端面对齐。如果能对齐, 说明 Z 方向对刀正确。	
注意事项	切断刀和螺纹刀 Z 向对刀时要注意,不能进行车削,否则 1 号刀的 Z 向基准将不存在,影响工件的完整性。	组另名生时行 时程
输入程序 程序模拟	1,输入程序 2、程序模拟的步骤: (1)按自动键 (2)依次按下机床操作面板上的机床锁、辅助锁、空运 行按钮 (3)按显示菜单中的图形键 (4)按循环启动键,观察加工轨迹,与零件的图形轮廓是否 符合,如果报警了、仔细查看到底处哪行的程序出了问题并 对程序进行修改	序输入模加加完一零后的、拟工工第个件,

零件自动 加工	完成程序校验后,依次按下机床操作面板上的机床锁、辅助锁、空运行按钮,使这三个按钮不起作用。然后将光标定位到程序的起始位置,切换到自动模式,关闭车床安全门,按下循环启动键。在观察加工过程的同时手放到急停按钮上,一旦发生问题,及时按下,避免事故的发生。	在工二零时任与外名同对加第个件,务另一 学,
小结	对操作过程中出现的共性问题进行说明。 布置后面的任务:填写实习报告、检查记录表、零件检测	保每过都动的会证个程有手机

《数控车编程与操作》实训报告

姓名		学号		班级					
指导教师		地点		日期					
组员									
一 面目夕ま	一								

一、项目名称

- 二、目的
- 1、理解内(外)径粗车复合循环指令G71的功能,走刀路径。
- 2.理解 G71 参数的含义。
- 3 .编写工件程序
- 三、内容及要求
- 1,填写加工工艺卡。
- 2. 编写加工程序

四、材料、工具

数控车床、材料、刀具、工具

五、过程(编写工件加工程序。)	
7、	
八、	
八、 我师 IT 足	
八、 我师 厅足	
八、 我则时一定	
八、我则时已	
八、我师厅足	
八、我则时已	
八、我则时已	
八、我则时在	
八、我则时已	
八、我则时在	
八、 我则以下足	
八、	
八、	
八、	
八、 秋炉 叶 廷	
八、教师时定	
八、教师时定	
ハ、 教师 IT 及	
ハ、 教师 IT 定	
八、	

任务五: 作品展示与评析

教学目标:

培养学生自检能力

学时: 2课时

教学过程:

一、布置任务

大家都参与了零件加工的全过程,利用这次课对大家的操作过程进行评价,然后对加工完成的零件进行质量分析。

二、学生分组讨论

以加工零件时分组为准,先进行组内自评。然后再进行小组间互评。

三、过程考核

过程考核分学习单元进行,每个学习单元的考核内容包括学习成果(权重60%)、工作态度(权重10%)、工作规范(权重20%)、团队合作(权重10%)四个方面,考核要求和标准见下表。

考核项目一 工作规范考核要求与评价标准

考核	扣垂	考核	标准		
内容	权重	A 等分值范围(85-100 分)	C 等分值范围 (60-70 分)		
安全文明 生产	15%	劳动护具穿戴整齐,遵守安全文明操作规定,违规酌情扣5-10分, 严重违规者可取消考核资格			
安全意识	15%	认真学习必须而有效的安全知识 和技能,掌握基本的安全科学技 术知识和方法,主动维护生活、 学习场所安全	能参加必须而有效的安全知识和 技能学习,了解基本的安全科学 技术知识和方法,造成了危害较 小的安全事故		
责任心	10%	认真负责,有主人翁意识。	工作服从安排,基本无失误,责 任心一般。		
职业行为 习惯	10%	能认真学习并严格遵守各工位操 作规程,认真研修知识、技能的 每个细节。	能基本遵守各工位操作规程,研 修基本知识、技能。		
规范 操作	40%	刀具与工件装夹规范准确。 按操作规程操作设备,动作规范, 步骤方法正确,符合安全文明生 产要求。	刀具与工件装夹基本规范、准确。 基本能按操作规程操作设备,无 安全隐患。		
设备 保养	5%	能按照规范完成设备保养与维 护。	设备保养与维护基本符合规范要 求。		
工作现场环境	5%	工作现场无不必要的工具、刀具、 量具,遵守定置管理制度,保持现 场工作环境清洁有序。	不注意清理现场,但基本不影响 正常操作。		

数控车床规范操作程序表

检测项目	评分标准	配分	自评	师评
	5	按步骤开机、检查、润滑		
机床	5	切削用量选择合理		
规范	5	输入程序,检查及修改		
操作 5		程序轨迹检查		
	5	工、夹、刀具正确		

考核项目二 工作态度考核要求与评价标准

考核	权重	考核标准						
内容		A 等分值范围(85-100 分)	C 等分值范围(60-70 分)					
学习 纪律	50%	严格遵守培训学校规章制度和岗 位管理制度,不迟到、早退和无故 缺勤。	能基本遵守培训学校规章制度,基 本上不迟到、早退,无重大违纪现 象。					
学习 态度	50%	工作认真,不怕苦、不怕累、不怕 脏,服从安排。发现自身不足后主 动向培训教师、同学虚心学习,发 现错误后及时主动改正。	学习积极性一般,基本上能服从教学安排。					

考核项目三 团队合作考核要求与评价标准

考核	担丢	考核标准					
内容	权重	A 等分值范围(85-100 分)	C 等分值范围(60-70 分)				
与他人 合作	40%	能够与同学保持良好的合作关 系,协助完成工作。	根据同学的请求能够提供一般协助。				
完成任务 时间	40%	在规定时间内完成任务	超出规定时间完成任务				
语言 表达	20%	语言表达流畅	语言表达较流畅				

四、综合考核

综合考核是依据给定的轴套类图样,要求学生在规定时间内独立制定加工工艺,正确进行零件定位与装夹,合理选择刀具,正确编写加工程序并操作数控车床加工出符合图样要求的零件。操作符合安全文明生产要求,尺寸公差等级达到 IT7、形位公差等级达到 IT8、表面粗糙度达到 Ra1.6-Ra3.2。评价标准见下表。

综合考核评价标准

序号	考核项目	评分标准	权重
1	加工工艺文件	合理编写加工工艺文件,包括工艺过程卡、加工工序卡、刀具调整卡。出现错误一处扣3分	10%
2	编制程序	熟练运用固定循环、子程序、宏程序, 合理 使用简化编程指令,程序不合理酌情扣分	10%
3	尺寸和形位精度	圆柱面、圆弧面、锥面、台阶、沟槽、螺纹 尺寸公差等级达 IT7-IT8 级,形位公差等级 达 IT8 级,超差无分	60%
4	表面质量	表面粗糙度达 Ra1.6 μ m-Ra3.2 μ m, 超差无分	10%
5	工量具的正确使用	正确使用工具、量具,摆放整齐。违规酌情 扣 1-5 分	10%

零件尺寸形位精度检测评价标准

项目	序号	尺寸精度与形位精度	分值	自评	互评
	_	¢30 Ra1.6	15		
外圆	1	6	8		
	2	¢20 Ra1.6	15		
总长	3	45 Ra1.6	15		
槽	4	¢11	7		
竹管	5	宽 5	7		
	6	公称直径 14	8		
螺纹		螺距 1.5	8		
		长度 20	8		
	7	倒圆角 R5	3		
其他	8	倒圆角 R3	3		
	9	例角 C2	3		
表面质量	10	表面粗糙度达 Ra1.6μm-Ra3.2μm, 超差无分	10		

五、综评

教师对小组间的互评结果进行总结,并对加工过程中出现的共性问题进行剖析。最后公布各组得分并进行综合性评价。

数控车编程与操作实训学习成果考核要求与评价标准

填表人:

年 月 日

		安全	规范	工作	团队			学习成果 60 分)				
组别	组长	生产 10 分	操作 10 分	态度 10 分	合作 10 分	工艺文件 6分	编制程序 6分	尺寸和形 位精度 36 分	表面质量6分	工量具的正确使用6分	自评	互评	师评
1	刘博远												
2	董志旺												
3	曾庆智												
4	袁宏坤												
5	于浩												
6	马健凯												
7	张治易												
8	姚星屹												
9	田宇航												
10	左尧超												